Comparison of Synchronous Reluctance Machines with High-Anisotropy Rotors

Erich Schmidt

Institute of Electrical Drives and Machines, Vienna University of Technology, Vienna, Austria erich.schmidt@tuwien.ac.at

Abstract — In terms of torque capability, power factor and efficiency, synchronous reluctance machines with high-anisotropy rotors represent an alternative to conventional induction machines. In particular, they have very robust rotors and can therefore operate at constant power in a wider field-weakening range. The paper discusses a comparison of the various machine concepts using an identical machine geometry by using finite element analyses.

I. Machine Designs

In the dq rotor fixed reference frame, the stator current and stator flux space vectors are given by

$$\underline{i}_{S,dq} = i_{Sd} + j i_{Sq} = i_S e^{j\beta} , \qquad (1)$$

$$\underline{\psi}_{S,dq} = \psi_{Sd} + j \,\psi_{Sq} = \psi_S \,e^{j\vartheta} \quad , \tag{2}$$

where β, ϑ denote stator current angle and stator flux angle, respectively. By using direct and quadrature

axis stator inductances l_d, l_q , the components of the stator linkage flux are defined as

$$\psi_{Sd} = l_d i_{Sd} + \psi_{Md} \quad , \tag{3a}$$

$$\psi_{Sq} = l_q i_{Sq} + \psi_{Mq} . \tag{3b}$$

The conventional reluctance machine can be described with a vanishing linkage flux $\psi_M=0$. With the permanent magnet assisted reluctance machine, $\psi_{Mq}<0$ represents the permanent magnet linkage flux which counteracts to any quadrature axis stator current $i_{Sq}>0$. On the other hand, the permanent magnet excited reluctance machine with $\psi_{Md}>0$ can be designed as either a normal-saliency machine $l_d>l_q$ or an inverse-saliency machine with $l_d< l_q$.

Fig. 1 depicts the cross section of the high-saliency rotors of the different machine designs concerned. With all these four designs, the stator is identical and consists of 24 slots with a conventional three-phase full-pitch winding.

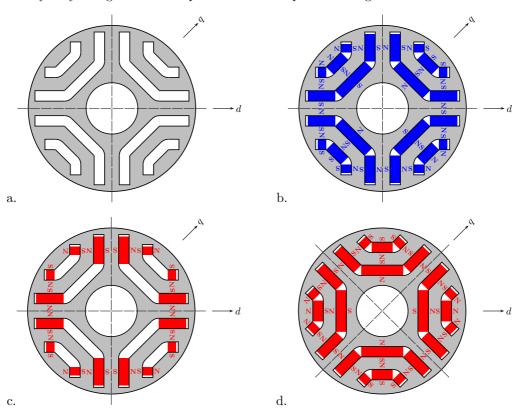


Fig. 1: Comparison of the machine designs: a. conventional reluctance machine,

- b. permanent magnet assisted reluctance machine with $\psi_{Mq} < 0, l_d > l_q$,
- c. normal-saliency permanent magnet excited reluctance machine with $\psi_{Md} > 0, \, l_d > l_q$,
- d. inverse-saliency permanent magnet excited reluctance machine with $\psi_{Md} > 0, l_d < l_q$

II. Sample Analysis Results

Fig. 2 shows the ratio l_d/l_q of the apparent inductances in dependence of the stator current magnitude i_S with a current angle of $\beta = \pi/4$ for both the conventional reluctance machine and the permanent magnet assisted reluctance machine with $\psi_{Mq} = -0.3$. Therefore, the permanent magnets significantly increase the saliency-ratio resulting in a wider speed range with constant power.

Fig. 3 and Fig. 4 show the ratio l_d/l_q or l_q/l_d of the apparent inductances in dependence of the stator current magnitude i_S with current angles of $\beta = \pi/4, \pi/2, 3\pi/4$ for the normal-saliency and the inverse-saliency permanent magnet excited reluctance machine with $\psi_{Md} = 0.6$, respectively.

In comparison of the four machine designs, the latter concept yields the highest saliency-ratio resulting in the widest speed range with constant power.

III. CONCLUDING REMARKS

Synchronous reluctance machines with internal rotor flux barriers are well suited for an application in position-sensorless drives with a wide field-weakening range due to their high effective saliency. By using an identical machine geometry, the conventional reluctance machine and the permanent magnet assisted reluctance machine as well as the normal-saliency permanent magnet machine and the inverse-saliency permanent magnet machine are compared against their operational behaviour in particular in the field-weakening range.

The full paper will additionally discuss the current trajectories for maximum torque with respect to the dq reference frame. These diagrams obviously depict the advantages of a high saliency ratio l_d/l_q in case of normal-saliency machines or l_q/l_d in case of inverse-saliency machines in particular in the field-weakening region. Additionally, a comparison with measurement data will be given.

References

- Vagati A., Fratta A., Franceschini G.: "AC Motors for High-Performance Drives: A Design-Based Comparison". IEEE Transactions on Industry Applications, Vol. 32, No. 5, September 1996.
- [2] Miller J.M., McClear P.J., Lang J.H.: "Starter-Alternator for Hybrid Electric Vehicle: Comparison of Induction and Variable Reluctance Machines and Drives". Proceedings of the IEEE Industry Applications Society 33th Annual Meeting, St.Louis (MO, USA), 1998.
- [3] Bianchi N., Bolognani S., Chalmers B.J.: "Comparison of Different Synchronous Motors Drives for Flux-Weakening Applications". Proceedings of the 13th International Conference on Electric Machines, ICEM, Instanbul (Turkey), 1998.

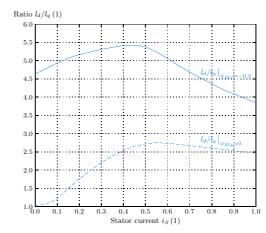


Fig. 2: Ratio l_d/l_q versus stator current magnitude i_S , current angle $\beta=\pi/4$, conventional reluctance machine (dashed line), permanent magnet assisted reluctance machine (straight line)

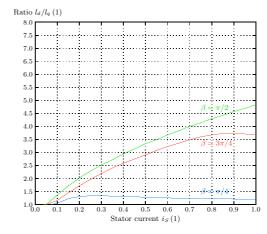


Fig. 3: Ratio l_d/l_q versus stator current magnitude i_S , current angles $\beta=\pi/4,\pi/2,3\pi/4$, normal-saliency permanent magnet excited reluctance machine

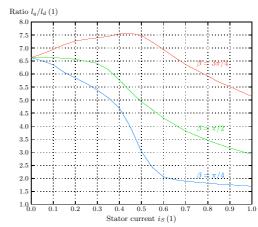


Fig. 4: Ratio l_q/l_d versus stator current magnitude i_S , current angles $\beta=\pi/4,\pi/2,3\pi/4$, inverse-saliency permanent magnet excited reluctance machine

- [4] Haataja J., Pyrhönen J.: "Synchronous Reluctance Motor: An Alternative to Induction Motor". Proceedings of the 14th International Conference on Electrical Machines, ICEM, Espoo (Finland), 2000.
- [5] Schmidt E., Brandl W., Grabner Ch.: "Optimization of a Synchronous Reluctance Machine for a Sensorless Drive with a Wide Field-Weakening Range". Elektrotechnik und Informationstechnik (e&i), Vol. 121, No. 3, 2004.